What's new in HSC Chemistry 5.0

The new HSC version 5 contains several new calculation routines, new properties and a larger database with updated data. The familiar HSC style user interface and file formats have been maintained in order to minimize the training requirements for current HSC users. The new features can be summarized as follows:

6.1. Updated Heat and Mass Balance Module

- HSC version 4 calculated only one balance area at a time. With the new HSC 5 up to 127 balances may be calculated simultaneously.
- Balance areas may be connected with each other using cell references or built-in element amount functions.
- Temperatures may be used as variables.
- Target routine is also available in Diagram option.
- New stream elemental composition calculator.
- Graphical objects may be added to sheets.
- Link to the new Steam enthalpy calculator (0.01 1000 bar).
- Link to the new Heat Loss routine.
- Many small improvements such as iteration routine fixes.

BSD He	at and Material Balance - C:\	HSC5\Balan	ce\Roasting	_p62bar.BAI			_ 🗆	×
<u>F</u> ile	<u>E</u> dit <u>V</u> iew <u>I</u> nsert <u>D</u> elete <u>F</u> orm	hat <u>U</u> nits <u>C</u> a	ilculate <u>T</u> arge	et Djagram	Options <u>H</u> elp	1		
	C8 =OUT2!C8							
	INPUT SPECIES (3) Formula	Temper. °C	Amount kmol	Amount kg	Amount Nm ³	Latent H kWh	Total H kWh	
1	Gas to Boiler:	892.555	2058.297	64580.110	46866.639	16620.056	-9049.903	
2	N2(g)	892.555	1595.476	44694.698	36366.720	11945.935	11945.935	
3	O2(g)	892.555	107.600	3443.075	2452.332	856.382	856.382	
4	Ar(g)	892.555	20.460	817.319	466.240	102.486	102.486	
5	H2O(g)	892.555	126.389	2276.915	2832.822	1158.466	-7331.572	
6	SO2(g)	892.555	208.373	13348.105	4748.525	2556.787	-14623.135	
7	Dust to Boiler:	892.555	145.786	13857.926	2.059	2229.912	-18208.804	
8	ZnS	892.555	1.314	128.005	0.032	16.791	-56.801	
9	ZnO	892.555	119.570	9730.514	1.736	1412.798	-10227.323	
10	ZnSO4	892.555	0.000	0.000	0.000	0.000	0.000	
11	ZnFe2O4	892.555	8.487	2046.018	0.000	370.487	-2409.185	
12	Fe2O3	892.555	0.943	150.593	0.029	32.594	-183.318	
13	PbSO4	892.555	0.521	157.972	0.025	20.746	-112.831	
14	РЪО	892.555	0.850	189.739	0.020	17.051	-34.441	
15	Cu2O	892.555	0.728	104.215	0.017	13.276	-21.259	
16	CdO	892.555	0.298	38.284	0.005	3.629	-17.820	
17	MgO	892.555	1.313	52.929	0.015	15.171	-204.155	
18	CaSO4	892.555	1.210	164.770	0.056	41.557	-440.589	
↓]₽	BAL A IN1 A OUT1 A IN2	A OUT2 A		110 764 3 A IN4 A	0.022 OUT4 A IN	<u> 24 242</u> 5 人 OUT5	374 107 A ING A O	-
	(0.12) (1.12) (0012) (1.12)	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	kmol	kø	Nm ³	kWh	kWh	
E <u>x</u> i	it Stream <> B	ALANCE (3)	-1.768	0.000	35465.255	-21300.27	0.00	

6.2. New HSC AddIn Functions for Excel 2000

HSC Excel AddIn makes native HSC functions and databases available directly within a normal Excel spreadsheet. Highly specialized applications may be created with these new Excel AddIn functions.

These functions work like normal Excel functions such as the **SUM** function. For example, **H("FeO";500)** function returns the enthalpy of FeO at 500 Kelvin. Another example is **WTP("Na";"Na2SO4")** function which returns the weight percent of sodium in sodium sulfate.

Up to 45 different HSC functions are available in Excel which automatically reads the HSC database.

	Microsoft Excel - AddInSample.	xls			
] <u>F</u> ile <u>E</u> dit <u>V</u> iew <u>I</u> nsert F <u>o</u> rmat (<u>T</u> ools <u>D</u> ata <u>W</u> indow <u>H</u> el	p		_ 8 ×
	i 🖻 🖬 🚑 🖨 🔃 🐇	🖻 🛍 🝼 🍇	🕌 📶 😨 🔅 10	• <i>I</i> <u>U</u>	- *
<u> </u>	C11 - = =H(D	D11;E11)	, <u> </u>		
	A B	С	D	E	F 🗖
<u></u>	USC Chemister 5.0 add in	n functions in MS F.	raol 2000		
4	Essential Essent	a functions in 1915 E3		· · · ·	
- 5	Examples		Red values are argument (i	nput) values.	
5	Functions	Return Values	Arguments		
6	General	Return Value	Argument l	Arg.2	Arg.3
7	UNITS(T;E)	C and Mcal	C	Mcal	
8	BAL(Equation)	2H2(g) + O2(g) = 2H2O(g)	H2(g)+O2(g)=H2O(g)		
9	SPECIES(DBNo,Position)	Al(CH3COO)2(+a)	2	200	
10	Species	Return Value	Argument l	Arg.2	Arg.3
11	H(Species;T)	-93.357	CO2(g)	100	
12	S(Species;T)	20.766	H2O(1)	100	
13	CP(Species;T)	44.245	CH4(a)	100	
14	G(Species;T)	-11.294	He(g)	100	
15	HKG(Species;T)	-0.264	FeS	100	
16	HNM3 or HCM(Species;T)	0.023	O2(g)	100	
17	HLAT(Species;T)	0.000	H2O(1)	25	
18	Reaction equation	Return Value	Argument l	Arg.2	Arg.3
19	H(Equation;T)	-115.952	2H2(g) + O2(g) = 2H2O(g)	100	
20	S(Equation;T)	-22.299	2H2(g) + O2(g) = 2H2O(g)	100	
21	CP(Equation;T)	-4.744	2H2(g) + O2(g) = 2H2O(g)	100	
22	G(Equation;T)	-107.631	2H2(g) + O2(g) = 2H2O(g)	100	
23	HKG(Equation;T)	-3.218	2H2(g) + O2(g) = 2H2O(g)	100	
24	K(Equation;T)	1.106E+63	2H2(g) + O2(g) = 2H2O(g)	100	
	Sheet1 / Sheet2 / Sheet	t3 /			
Dra	aw 🔹 😓 🍪 🛛 A <u>u</u> toShapes 🔹 🔨	🔪 🗆 🔿 🕋 🖣 🛛	🛿 🔌 - 🚄 - 📥 - 🚍	≡ ≓ 🗖 (7 -
Rea	ady			NUM	

6.3. New Drawing Toolbar

The new Drawing Toolbar may be used to draw basic graphical objects (lines, arrows, rectangles, ellipses) in HSC diagrams. These shapes may be used, for example, to illustrate experimental conditions. Versatile formatting options may be used to edit lines or add fill colour, line widths and styles.

Drawing Objects may be created and edited with the mouse or using the Object Editor, which enables very exact editing with numerical values. Drawing Objects may be fixed so that they can be used in all diagrams or they may be saved for later use in files.

6.4. New Diagram Options

- HSC 4 was able to save diagrams using only one WMF format. Now more than 30 file formats are available, such as JPG, BMP, etc.
- Diagrams may also be edited using the new HSC Image Editor.
- Several diagrams may be combined with the new HSC Image Combiner if the same X- and Y-scales have been used.
- There is a new Diagram Grid format option as well as some new formatting options for diagram curves.

6.5. Larger Database with new Options

- The number of species in the database has been increased from 15000 to more than 17000. The quality of the database has been improved and the temperature ranges of the available data have also been expanded; more than 5000 changes have been made.
- New water data at pressures from 0.01 1000 bar are now available.
- Limitation of 2000 species has been removed from the Search routine.
- New Search mode has been added (All elements must exist).
- New fast Table and Diagram routines have been added to Database Editor.
- Several other small improvements have also been made.

88	🛛 Data	abase															J	- 0	×
	1A		Ple	ase se	elect l	Eleme	nts:		A	ll mu:	st exis	t 🗆						8A	
	н	2A	Cr	s o	F								3A	4A	5A	6A	7A	He	
	Li	Be	ĺ										в	С	N	0	F	Ne	
	Na	Mg	3B	4B	5B	6B	7B	8B	8B	8B	18	2B	AI	Si	Р	S	CI	Ar	
	к	Ca	Sc	Ti	۷	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr	
	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	Т	Xe	
	Cs	Ba	La	Hf	Ta	w	Re	Os	Ir	Pt	Au	Hg	ті	РЬ	Bi	Po	At	Rn	
	Fr	Ra	Ac																
				Ce	Pr	Nd	Pm	Sm	Eu	Gd	ТЬ	Dy	Ho	Er	Tm	Yb	Lu		
				Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	101				
	Sea	rch M	ode [.]	_											_				╡
	ज	Gases	ouo.	v	Cond	ensed	i	∏ Ac	lueou	s ions		Г	Orgai	nic (>	2 C).	Carbo	n Limi	ts:	
		Gas lo	ns	Г	Liqui	ds		□ Ac	lueou	s neu	tral	Γ							
j		Exit				Help				M	aximu	m num	ber [400)0		OK		Ī

HSC – New in HSC 5.0 6/18 Antti Roine September 5, 2023

📴 Database Editor: C:\H	ISC5\DATABASE5\MA	INDB5.HSC					L.	- 0	×	
File Edit Insert Delete F	Format Fit Help									
MainDB File 🔹	Find Formula	врон				•	Cal	lorie	s	
RbN03	Structural Formula						Jou	les		
RbN03(g)	Chemical Name	Rubidium hydr	oxide				Pri	nt		
KbNU3(g) BbN03(ia)	Common Name			Table 100						
RbNa(g)	Cham Abs Number	1310.82.3	J. K	Diagram			Ы			
RbNa(g)	Chem. ADS. Number	102 475	CE.	л.р. к	н	S	նո	G		
Rb2Ni(CN)4(ia)	Molecular Weight	102.475	100			•	-	4		
RbO(g)	Temp. Hange:	1.	2.	3.	4.			5.		
RbO(g)	11 K	298.15	508.	.00 658.0	0					
Bb02	12 K	508.00	658.	.00 2000.0	0					
Rb20	Phase	\$		\$	1					
Rb20	H kcal/mol	-100.096	1.3	1.91	2					
Rb2U Rb20	S cal/(mol*K)	22.467	2.5	588 2.90	6					
Rb20(g)	A cal/(mol*K)	13.105	18.1	64 20.55	4				_	
Rb20(g)	В	11.356	0.0	0.00	0					
Rb202	С	-0.002	0.0	0.00	0					
Rb202(a)	D	0.031	0.0	0.00	0					
Rb202(g)	Density kg/l	3.200	0.0	0.00	0					
Rb203	Color RGB	15		0	0					
Rb0H	Solubility in H2O g/l	0.000	0.0	0.00	0					
REOH	Reference	Gurvich 97	Gurvich 97	Gurvich 97						
RbOH	Reliability Class	1	1	1						
KDUH(g)					_					
Delete Species	Read from:	OwnDB File			▼	I	_ist			
Exit	Save to:	OwnDB File 🔹 Fit Cp Data								

6.6. Improved Equilibrium Module

- Calculation reliability has been improved in many of the test cases.
- New database search options without the limit of 2000 species.
- New Species Name display added to the database search routine.
- New Warnings routine for temperature range extrapolation.
- Small fixes e.g. species name length increased from 20 to 24 characters.

HSC – New in HSC 5.0 7/18 Antti Roine September 5, 2023

OK

and obecies of the 2	ystem							- 🗆 ×
Sulfur dioxide, Bari	n 93, Frenk	el 94				1	50 K	5000 K
Cr(g)	S2F10(g)	0	Cr(+2a)				1 2 3	4 5
CrD(a)	SU(g) SU2(a)		cr0(+a) Cr02(-a)				Species 4000	l mau
Cr02(g)	SO3(g)	C	CrO4(-2a)	l_				
CrO3(g)	S20(g)		Cr207(-2a 5(a)				,
Fía)	SOF(g) SOF2(a)	Ċ][-a]				Delete Se	elected
F2(g)	SOF4(g)	C)2(-a)					
0(g) 02(a)	SO2F2(g)]2(-2a)				Delete Un	selected
03(g)	CrF	9	52(-2a)				Select C	lass 1
OF(g)	CrF2	9	63(-2a)					
OF2(g)		99	54(-2a)				Peep Da	tabase
02F2(a)	CrO2	9	56(-2a)				Print Sn	ecies
OFO(g)	CrO3	S	60`3(-2́a)					
S(g)	Cr203	9	604(-2a)	,			Help	
52(g) S3(a)	Cr8021	9	5203(-2a 520 4 (-2a	1				
S4(g)	CrS	Keen Ctrl Key	down and	: I select with Mr	nuse			
S5(g)	CrS1.17			1				
56(g) S7(a)	CrS1.333	39	5207(-2a 5208(-2a	1				
S8(g)	Cr2S3	9	6303(-2a	j			Sort Specie	s To:
SF(g)	Cr2(SO4)3	3 9	6306(-2a)			Phases	
SF3(a)	S	9	5405(-2a 5406(-2a	1			Gas, Aq	ua, Pure
SF4(g)	Š(M)	9	6503(-2a	j			with sort	ing
SF5(g)	SF6	9	6506(-2a	j			Gas, Aq	Ja, Pure
S2F2(a)	52F10 S03(B)		56U3[-2a	ų,			with no a	sorung
			blibi-2a					
S2F2(Jg)	SO3(G)	9	5606(-2a 5703(-2a)			Beturn	Continue
S2F2(Jg) S2F2(Pg)	503(6) S03(6) Cr(+3a)	5 C C C	606(-2a 6703(-2a 6706(-2a)))			Return	Continue
S2F2(Jg) S2F2(Pg) BR HSC Warnings	503(6) S03(6) Cr(+3a)	55	606(-2a 6703(-2a 6706(-2a)))			Return	Continue
S2F2(Jg) S2F2(Pg) BUE HSC Warnings File Edit	SO3(G) Cr(+3a)	3 5 5 5	5006[-2a 5703[-2a 5706[-2a)			Return	Continue
S2F2(Jg) S2F2(Pg) BSC HSC Warnings File Edit File: C:\HSC5\Gibb	503(G) Cr(+3a) s\Feso4.igi	S	5606[-2a 5703[-2a 5706[-2a))			Return	Continue
S2F2[Jg] S2F2[Pg] File Edit File: C:\HSC5\Gibb HSC-data will be ext	SO3(G) Cr(+3a) s\Feso4.igi rapolated ou	s S utside availab	1e temper)) ature range.			Return	Continue
S2F2[Jg] S2F2[Pg] BBC HSC Warnings File Edit File: C:\HSC5\Gibb HSC-data will be ext Extrapolation is usu	SO3(G) Cr(+3a) s\Feso4.igi rapolated ou ally OK, but	utside availab may cause er	le temper]] ature range. lues far beyon	nd availab	le range is us	Return ed.	
S2F2[Jg] S2F2[Pg] File Edit File: C:\HSC5\Gibb HSC-data will be ext Extrapolation is usu WARNINGS	SO3(G) Cr(+3a) s\Feso4.igi rapolated or ally OK, but	utside availab may cause er Selected Ray	1e temper rrors if va)) ature range. lues far beyon Available Ra	nd availab unge K	le range is us Reference	Return ed.	Continue
S2F2[Jg] S2F2[Pg] BBC HSC Warnings File Edit File: C:\HSC5\Gibb HSC-data will be ext Extrapolation is usu WARNINGS Species N2(c)	s\Feso4.igi rapolated ou ally OK, but	utside availab may cause er Selected Rar Tl 272	le temper rors if va nge K 1222 1222) ature range. lues far beyon Available Ra T min 202	nd availab inge K T max 6000	le range is us Reference	Return ed.	Continue
S2F2[Jg] S2F2[Pg] File Edit File: C:\HSC5\Gibb HSC-data will be ext Extrapolation is usu: WARNINGS Species N2(g) H2O(c)	s\Feso4.igi rapolated ou ally OK, but	utside availab may cause er Selected Rar Tl 273 273	1e temper rors if va nge K 1873 1873	J ature range. lues far beyon Available Ra T min 298 208	nd availab nge K T max 6000	le range is us Reference JANAF 85 LANAF 85	Return ed.	Continue
S2F2[Jg] S2F2[Pg] BBC HSC Warnings File Edit File: C:\HSC5\Gibb HSC-data will be ext Extrapolation is usu- WARNINGS Species N2(g) H2O(g) Fe(g)	SO3(G) Cr(+3a) s\Feso4.igi rapolated ou ally OK, but	utside availab may cause er Selected Rav Tl 273 273 273	1873 1873 1873 1873 1873 1873	ature range. lues far beyon Available Ra 298 298 298	nd availab nge K T max 6000 6000 3200	le range is us Reference JANAF 85 JANAF 85 Barin 89	Return ed.	Relia- bility 1 1
S2F2[Jg] S2F2[Pg] BSC HSC Warnings File Edit File: C:\HSC5\Gibb HSC-data will be ext Extrapolation is usu- WARNINGS Species N2(g) H2O(g) Fe(g) Fe(g) Fe(g) Fe(g)	SU3(G) Cr(+3a) s\Feso4.igi rapolated ou ally OK, but	utside availab may cause er Selected Rar 11 273 273 273 273 273	le temper rrors if va nge K 1873 1873 1873 1873	ature range. lues far beyor Available Ra T min 298 298 298 298	nd availab nge K T max 6000 6000 3200 550	le range is us Reference JANAF 85 JANAF 85 Barin 89 Phillips 88 J	ed.	Relia- bility 1 1 1 1
S2F2[Jg] S2F2[Pg] BSC HSC Warnings File Edit File: C:\HSC5\Gibb HSC-data will be ext Extrapolation is usu: WARNINGS Species N2(g) H2O(g) Fe(g) Fe(g) Fe(g) FeSO4*7H2O FeSO4*4H2O	s\Feso4.igi rapolated ou ally OK, but	utside availab may cause er Selected Ray 273 273 273 273 273 273 273	le temper rrors if va nge K 1873 1873 1873 1873 1873 1873	ature range. lues far beyon Available Ra T min 298 298 298 298 298 298	nd availab nge K T max 6000 6000 3200 550 550	le range is us Reference JANAF 85 JANAF 85 Barin 89 Phillips 88, J Glusko IV II	Return ed. Pankratz 95 72. Pankratz 95	Relia- bility 1 1 1 1
S2F2[Jg] S2F2[Pg] File Edit File: C:\HSC5\Gibb HSC-data will be ext Extrapolation is usu: WARNINGS Species N2(g) H2O(g) Fe(g) Fe(g) FeSO4*7H2O FeSO4*4H2O FeSO4*H2O	s\Feso4.igi rapolated ou ally OK, but	utside availab may cause er Selected Rar 273 273 273 273 273 273 273 273 273 273	le temper rrors if va nge K 1873 1873 1873 1873 1873 1873 1873 1873	ature range. lues far beyon Available Ra <u>T min</u> 298 298 298 298 298 298 298	nd availab inge K T max 6000 6000 3200 550 550 550	le range is us Reference JANAF 85 JANAF 85 Barin 89 Phillips 88, 1 Glusko IV II Pankratz 95	Return ed. Pankratz 95 72, Pankratz 95	Continue
S2F2[Jg] S2F2[Pg] File Edit File: C:\HSC5\Gibb HSC-data will be ext Extrapolation is usu: WARNINGS Species N2(g) H2O(g) Fe(g) Fe(g) FeSO4*7H2O FeSO4*7H2O FeSO4*4H2O FeSO4*H2O Fe2(SO4)3	s\Feso4.igi rapolated ou ally OK, but	utside availab may cause er Selected Rar 273 273 273 273 273 273 273 273 273 273	le temper rors if va nge K 1873 1873 1873 1873 1873 1873 1873 1873	ature range. lues far beyon Available Ra T min 298 298 298 298 298 298 298 298 298 298	nd availab inge K T max 6000 6000 3200 550 550 550 1500	le range is us Reference JANAF 85 JANAF 85 Barin 89 Phillips 88, 1 Glusko IV II Pankratz 95 Barin 89	Return ed. Pankratz 95 72, Pankratz 95	Relia- bility 1
S2F2[Jg] S2F2[Pg] File Edit File: C:\HSC5\Gibb HSC-data will be ext Extrapolation is usu WARNINGS Species N2(g) H2O(g) Fe(g) FeSO4*7H2O FeSO4*7H2O FeSO4*4H2O FeSO4*H2O FeSO4	s\Feso4.igi rapolated ou ally OK, but	utside availab <u>may cause er</u> Selected Rar 273 273 273 273 273 273 273 273 273 273	le temper rors if va nge K 1873	ature range. lues far beyon Available Ra T min 298 298 298 298 298 298 298 298	nd availab inge K T max 6000 6000 3200 550 550 550 550 1500 1500 1000	le range is us Reference JANAF 85 JANAF 85 Barin 89 Phillips 88, 1 Glusko IV II Pankratz 95 Barin 89 Knacke 91	Return ed. Pankratz 95 72, Pankratz 95	Relia- bility 1
S2F2[Jg] S2F2[Pg] File Edit File: C:\HSC5\Gibb HSC-data will be ext Extrapolation is usu WARNINGS Species N2(g) H2O(g) Fe(g) FeSO4*7H2O FeSO4*4H2O FeSO4*H2O FeSO4*H2O FeSO4 FeO4 FeO*OH	SO3(G) Cr(+3a) s\Feso4.igi rapolated ou ally OK, but	utside availabi may cause er Selected Rar 273 273 273 273 273 273 273 273 273 273	le temper rors if va nge K T2 1873	ature range. lues far beyon Available Ra 298 298 298 298 298 298 298 298	nd availab ngge K T max 6000 6000 3200 550 550 550 550 1500 1500 1000 400	le range is us Reference JANAF 85 JANAF 85 Barin 89 Phillips 88, 1 Glusko IV II Pankratz 95 Barin 89 Knacke 91 Knacke 91	Return ed. Pankratz 95 72, Pankratz 95	Relia- bility 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
S2F2[Jg] S2F2[Pg] BBC HSC Warnings File Edit File: C:\HSC5\Gibb HSC-data will be ext Extrapolation is usu- WARNINGS Species N2(g) H2O(g) Fe(g) F	sU3(G) Cr(+3a) s\Feso4.igi rapolated ou ally OK, but	utside availab may cause er Selected Ray 273 273 273 273 273 273 273 273 273 273	le temper rors if va nge K 1873	ature range. lues far beyon Available Ra 298 298 298 298 298 298 298 298	nd availab nge K T max 6000 6000 3200 550 550 550 1500 1500 1000 400 3687	le range is us Reference JANAF 85 JANAF 85 Barin 89 Phillips 88, 1 Glusko IV II Pankratz 95 Barin 89 Knacke 91 Knacke 91 Barin 93	Return ed. Pankratz 95 72, Pankratz 95	Continue
S2F2[Jg] S2F2[Pg] BSC HSC Warnings File Edit File: C:\HSC5\Gibb HSC-data will be ext Extrapolation is usu- WARNINGS Species N2(g) H2O(g) Fe(g) Fe(g) Fe(g) Fe(g) Fe(g) FeSO4*7H2O FeSO4*4H2O FeSO4*4H2O FeSO4*H2O FeSO4*H2O FeSO4*H2O FeSO4*H2O FeSO4*FeO FeO FeO FeO FeO FeO	sU3(G) Cr(+3a) s\Feso4.igi rapolated ou ally OK, but	utside availab may cause er Selected Ray 273 273 273 273 273 273 273 273 273 273	le temper rrors if va nge K 1873 1873 1873 1873 1873 1873 1873 1873	ature range. lues far beyon Available Ra T min 298 298 298 298 298 298 298 298	nd availab nge K T max 6000 6000 3200 550 550 550 1500 1000 400 3687 1700	le range is us Reference JANAF 85 JANAF 85 Barin 89 Phillips 88, 1 Glusko IV II Pankratz 95 Barin 89 Knacke 91 Knacke 91 Barin 93 Barin 93	Return ed. Pankratz 95 72, Pankratz 95	Relia- bility 1
S2F2[Jg] S2F2[Pg] File Edit File: C:\HSC5\Gibb HSC-data will be ext Extrapolation is usu WARNINGS Species N2(g) H2O(g) Fe(g) Fe(g) FeSO4*7H2O FeSO4*7H2O FeSO4*4H2O FeSO4*H2O Fe2(SO4)3 FeSO4 FeO*OH FeO Fe2O3 Fe3O4	s\Feso4.igi rapolated ou ally OK, but	atside availab may cause er Selected Ray 273 273 273 273 273 273 273 273 273 273	le temper rrors if va nge K 1873 1873 1873 1873 1873 1873 1873 1873	ature range. lues far beyon Available Ra T min 298 298 298 298 298 298 298 298	nd availab nge K T max 6000 6000 3200 550 550 550 1500 1000 400 3687 1700 2000	le range is us Reference JANAF 85 JANAF 85 Barin 89 Phillips 88, 1 Glusko IV II Pankratz 95 Barin 89 Knacke 91 Knacke 91 Barin 93 Barin 93 Barin 89	Return ed. Pankratz 95 72, Pankratz 95	Relia- bility 1
S2F2[Jg] S2F2[Pg] File Edit File Edit File: C:\HSC5\Gibb HSC-data will be ext Extrapolation is usu WARNINGS Species N2(g) H2O(g) Fe(g) FeSO4*7H2O FeSO4*7H2O FeSO4*4H2O FeSO4*4H2O Fe2(SO4)3 FeSO4 FeO*OH FeO Fe2O3 Fe3O4 H2O	s\Feso4.igi rapolated ou ally OK, but	s s s s s s s s s s s s s s s s s s s	le temper rrors if va nge K 1873 1873 1873 1873 1873 1873 1873 1873	ature range. lues far beyon Available Ra T min 298 298 298 298 298 298 298 298	nd availab nge K T max 6000 6000 3200 550 550 550 1500 1500 1000 400 3687 1700 2000 500	le range is us Reference JANAF 85 JANAF 85 Barin 89 Phillips 88, J Glusko IV II Pankratz 95 Barin 89 Knacke 91 Barin 93 Barin 93 Barin 89 JANAF 85	ed. Pankratz 95 72, Pankratz 95	Continue
S2F2[Jg] S2F2[Pg] File Edit File: C:\HSC5\Gibb HSC-data will be ext Extrapolation is usu: WARNINGS Species N2(g) H2O(g) Fe(g) FeSO4*7H2O FeSO4*7H2O FeSO4*7H2O FeSO4*4H2O FeSO4*H2O FeSO4*H2O FeSO4 FeO Fe2(SO4)3 FeSO4 FeO Fe2O3 Fe3O4 H2O	s\Feso4.igi rapolated ou ally OK, but	side availab may cause er Selected Ray 273 273 273 273 273 273 273 273 273 273	le temper rors if va nge K 1873	ature range. lues far beyon Available Ra T min 298 298 298 298 298 298 298 298	nd availab ngge K T max 6000 6000 3200 550 550 550 550 1500 1500 1000 400 3687 1700 2000 500	le range is us Reference JANAF 85 JANAF 85 Barin 89 Phillips 88, J Glusko IV II Pankratz 95 Barin 89 Knacke 91 Knacke 91 Barin 93 Barin 93 Barin 89 JANAF 85	ed. Pankratz 95 72, Pankratz 95	Continue

Hide Warnings

Print

Cancel

6.7. New Heat Loss Module

The new Heat Loss module may be used, for example, to estimate heat loss values needed in the Balance module. The user must first specify the wall layers, layer materials and thickness of these layers. Two basic types of calculations may be carried out:

```
1 Temperature profile with fixed heat loss and one
```

temperature point. **2** Heat Loss with two fixed temperature points will return the heat loss but also the temperature profile.

The calculation routine handles conduction, convection and radiation properties as functions of temperature, but fixed values may also be used by selecting the value and pressing the Fix Value button. These fixed values are shown in red on the calculation sheet.

Temperature profile as well as some other user specified values may also be presented in graphical form. The Target Dialog may be used to find, for example, minimum layer thickness. The calculation specifications may be saved to files for later use.

📴 Heat Transfer Calo	ulations C:	HSC5\HeatLo	ss\Smelting3.H	TR		_0	×	
<u>F</u> ile <u>E</u> dit <u>V</u> iew I <u>n</u> sert	Dejete Fo	rmat Calculate	Target Diagram	Help				
C9 1200.00	0572456065							
Properties	Units	1	2	3	4	5		
Column Type: Material: Surface Material:		Surface Molten metal	Layer Ankrom-B 65	Layer CARBLOX B5	Layer Carbon steel: ()	Surface Water, Spray co	, ,	
Thickness x	m		0.021	0.110	0.040			
Surface Area A	m²	1.000	1.000	1.000	1.000	1.000	.	
Conduction k (mean)	W/(m °C)		1.809	13.835	50.000			
Surface Convection hc	₩/(m² °C)	196.000				1200.000		
Surface Radiation hr	W/(m ² °C)	0.000				0.000		
Left (inner) T	°C	1200	970	447	89	53		
Right (outer) T	°C	970	447	89	53	15	-	
Thermal Resistance	°C/kW	5.102	11.613	7.953	0.800	0.833		
Heat Flux	kW/m²	45.054	45.054	45.054	45.054	45.054		
Calculation Grid			10	10	10			
Distance	m	0.000	0.021	0.131	0.171	0.171	-	
Image: Smelting 1200°	ć /					Þ		
Get Data for Column: <u>Conduction</u> Convection <u>Radiation (surfac</u> Radiation (gas) Radiation (particle	e) (es) (DTAL HEAT FL Shape and Dime Wall Drav Cube Cylinder Sphere	0W: 45.0 ensions: Width Length	54 kw <u>*</u> 1.0 m 1.0 m	Calculate: - <u>T</u> emper <u>H</u> e	ature profile at flo w => COLD		
E <u>x</u> it		Fix <u>V</u> alue	Djag	gram Table	<u>D</u> raw Diagram			

The Heat Loss module is integrated with three databases and two calculators:

- Conduction database with 718 substances
- Convection database with 111 substances and 4 functions

- Radiation database with 61 surface materials
- Gas Radiation Calculator with H2O, CO2, CO, NO, SO2 and CH4 data
- Particle Radiation Calculator.

The user may edit or add new data to these databases.

UF Co View	nduction C:\HSC5\Datab	View	nvectio	on C:\HSC5\D	atab 🗖 🗖 🕻	×	UF S View	urface R	adiation C:\HS	C5 💶 🗙
Alun	ninium oxide	Refr	igerant 1	114 C2C12F4 (lic	quid)	1	Sta	inless ste	el (n)	
	Thermal 🔺		_	Therm	ial -	-			Therma	1 1
	Database		-	Convec Databa	uon ise			-	Databas	n e
62	Zinc Zn	52	Refrig	erant 114 C2C	12F4 (liquid)		13	Nicke	Լ(ի)	
63	Zirconium Zr	53	Refrig	cerant 11 CC13	F (liquid)		14	Nicke	l (h)	
64	Aluminium oxide	54	Methy	lenchloride C2	Cl3F3 (liquid-		15	Platin	um (h)	
65	Aluminium oxide	55	Refrig	cerant 113 C2C	(13F3 (liquid)		16	Silver	(h)	
66	(polycrystalline) Beryllium oxide	56	(liquid Chlori	l refrigerant at b ine Cl2 (liquid)	oiling point)		17	(polish Stainle	ied) ess steel (n)	
67	Boron	57	(liquid Metha	refrigerant at b nol CH3OH (li	oiling point) q uid)		18	(typics) Stainle	il, polished) ess steel (n)	
68	Boron fiber epoxy (30% vol) comp	58	(liquid Ethand	coolant) ol C2H5OH (lig	puid)	_	19	(typics Stainle	il, cleaned) ess steel (n)	
69	(k parallel to fibers) Boron fiber epoxy (30% vol) comp	• •	\ Table	Function			20	(typics Stainle	al, lightly oxidize ess steel (n)	:d)
70	(k normal to fibers) Carbon C	Angle	of object	t (0 or 90) 0	•		21	(typics)	al, highly oxidize	:d)
71	(amorphous)	O Fi	ree Conv orced Co	rection Invection	side		22	(AISI 2	347, stably oxidi	zed)
1	(turne D	Spee (horiz	d of gas/ ontal flov	/liquid 0.04 m v)	i/s		4)	(notice Table	n) ord_cheat)	•
para	<u> Find </u>				<u>≺ F</u> ind <u>≻</u>					<u>≺ F</u> ind <u>≻</u>
<u>E</u>	xit Vie <u>w</u> 1 <u>S</u> elect	E	xit	Vie <u>w</u> 1	<u>S</u> elect		ļ	<u>E</u> xit	Vie <u>w</u> 1	<u>S</u> elect

📴 Gas Mixture Ra	adiation Calcu	lator - Tapio A	Ahokainen				_ 🗆 🗵
User In	put			Res	ults		
Species	vol-%	Nyy-Low	Nyy-Upp	F-Low	F-Upp	DF	SumDF
H2O(g)	5.00						
CO2(g)	23.00	1	417	1.0000	0.9970	0.0030	0.0030
CO(g)	3.20	459	757	0.9961	0.9844	0.0117	0.0146
NO(g)	0.10	957	963	0.9710	0.9705	0.0005	0.0151
SO2(g)	12.00	1057	1063	0.9624	0.9619	0.0006	0.0157
CH4(g)	0.01	1099	1203	0.9585	0.9478	0.0107	0.0264
		1290	1432	0.9378	0.9198	0.0180	0.0444
	1		A 14(all 7	0.0027	0.0072	0.0164	
Gas Properties Temperature [°C]: Pressure [bar]: Optical Depth [m]: Surface Propertie Temperature [°C]: Emissivity	1200 1 0.45 es 970 0.85	Gas Emiss Gas Abso Heat Flux	sivity at Gas ' rptivity at Sur [kW/m²]	Temperature face Tempe	rature	0.1655 0.2044 15.27	te
E <u>x</u> it				Select at <u>f</u> ix	ed T	<u>S</u> elect it	erative

HSC – New in HSC 5.0 10/18 Antti Roine September 5, 2023

Particle Suspension	Radiation (Calculator			_ 🗆 ×
User	Input:		Res	ults:	
Property	Unit	Value	Property	Unit	Value
Gas Amount	Nm³/h	24100	Gas	m³/h	129976
Particle Amount	t/h	69	Particles	m³/h	16.0
Particle Density	g/ml	4.3	Gas + Particles	m³/h	129992
Particle Diameter	mm	0.050	Particles	g/m ³	531
Particle Emissivity		1.000	Particles	ml/m ³	123.4
Cube Width & Height	m	0.002	Particles	vol-%	0.0123
Cube Thickness	m	0.100	Particle Radius	mm	0.02500
Tube diameter	m	4.200	P. Cross-sectional Area	mm ²	0.00196
			Particle Volume	mm ³	0.00007
			Particle Weight	g	2.81E-07
			Particles/m ³		1.89E+09
			Cube Volume	m ³	4E-007
			Particles in Cube		754
			Particle Distances	mm	0.81
			Gas Speed	m³/sec	36.11
			Gas Speed in Tube	m/sec	2.61
Gas Properties Temperature (*C): Gas emissivity at gas temp:	12	200	Particle cloud Emissi	vity	0.3095
Surface Properties	temp: j 0.2	:044	Heat Flux [KW/m ²]		48.23
T (0)					
Emissivity	9	70 .85	Calc	ulate	
E <u>x</u> it		<u>D</u> iagram	Select at <u>f</u> ixed T	<u>S</u> elect	iterative

6.8. New Steam Calculator Module

The new Steam Calculator module offers a much more convenient way to estimate enthalpies, entropies and densities of steam, water and ice than the traditional Steam Tables and Mollier Diagrams within 4 - 2273 K and 0.01 - 1000 bar. Steam enthalpies may be needed, for example, when calculating the heat and material balances of boilers or turbines.

BSR Pressure a	and Temperatu	ure Calculator	: Peter Björkl	und, Antti Re	oine					_ D ×
<u>File E</u> dit <u>F</u> or	rmat <u>S</u> how <u>H</u>	elp			500					
Water	I Stoom (Calculator		20	- 300 T					
tt alei			⊂ Data Limit	2 0	[*C]					
Amount	1.0	kg 💌	T = -200	. 2000 °C	400				Critical point	
MW	18.0152	kg/kmol	P = 0.001 .	1000 bar	100		Gas		2	
	Point l	Point 2	Delta	Unit			Steam			
Temperature	300.000	0.010	299.990	•C 💽	300			_		
Pressure	85.909	0.006	85.903	bar 💌]					
Phase	Sat. (g,l) 💌	Liquid (I) 💌								
Mixture %	50.0				200			\perp		
H	-13924.256	-15970.825	-2046.569	kJ 💌						
S	7.996	3.516	-4.480	kJ/°C						
H specific	1022.254	-104.600	-1126.853	kJ	100				Liquid	
G	-18506.889	-16931.235	1575.654	кJ	100		5//	1	Water	
Ср	5.793	4.220	-1.573	kJ/kg°C	_	Tripl poin				
Density	381.082	1000.000	618.918	kg/m³ <u>▼</u>			$\boldsymbol{\nu}$			
					U		2			
							5	olid		N
					100			Ice		
<u>E</u> xit			<u>C</u> alcu	late	-100	01 0.	.01 0.1	1 1	0 100 10	00 P [bar]
Pressure a	and Temperatu	ure Calculator	Peter Biörkl	und. Antti Bo	oine					
ESE Pressure a File Edit For	a <mark>nd Temperatu</mark> rmat <u>S</u> how <u>H</u>	u <mark>re Calculator</mark> elp	: Peter Björkl	und, Antti Ro	oine					<u>- 0 ×</u>
BSE Pressure a File Edit For	a nd Temperatu rmat <u>S</u> how <u>H</u>	u re Calculator elp	: Peter Björkl	und, Antti Ro	oine 500					
ESE Pressure a File Edit For Water	a <mark>nd Temperatu</mark> mat <u>S</u> how <u>H</u> /Steam (ure Calculator ^{elp} Calculator	: Peter Björkl	und, Antti Ro 20	oine 500 T					
BUC Pressure a Eile Edit Eoi Water Amount	and Temperatu mat <u>Show H</u> / Steam (ure Calculator elp Calculator	E Peter Björkl H2 Data Limit	und, Antti Ro 20 s	500 T [*C]				Critical	
ENE Pressure a File Edit For Water Amount	and Temperatu mat <u>S</u> how <u>H</u> / Steam (1.0 18.0152	ure Calculator elp Calculator kg v kg/kmel	E Peter Björkl H2 Data Limit T = -200 P = 0.001	und, Antti Ro 20 s 2000 °C 1000 bar	500 T [*C] 400				Critical point	
Eile Edit Eoi Water Amount MW	and Temperatu mat <u>S</u> how <u>H</u> / Steam (1.0 18.0152	ure Calculator elp Calculator kg 🔽 kg/kmol	Peter Björkl H2 Data Limit T = -200 P = 0.001 .	und, Antti Ro 20 8 . 2000 °C 1000 bar	500 T [*C] 400		Gas		Critical point	
Bille Edit Eor File Edit Eor Water Amount MW	and Temperatu mat <u>S</u> how <u>H</u> / Steam (1.0 18.0152 Point 1	ure Calculator elp Calculator kg v kg/kmol Point 2	E Peter Björkl H2 Data Limit T = -200 P = 0.001 . Delta	und, Antti Ro 20 * . 2000 *C 1000 bar Unit	500 T [*C] 400		Gas Steam		Critical point	
BSC Pressure a File Edit For Water Amount MW	and Temperatu mat <u>Show H</u> / Steam (1.0 18.0152 Point 1 -75.000	ure Calculator elp Calculator kg v kg/kmol Point 2 150.000	Peter Björkl H2 Data Limit T = -200 P = 0.001 . Delta 225.000	und, Antti Ro 20 s .2000 *C 1000 bar Unit *C v	500 T [*C] 400		Gas Steam		Critical point	
BSK Pressure a Eile Edit Eor Water Amount MW Temperature Pressure	and Temperatu mat <u>Show H</u> / Steam (1.0 18.0152 Point 1 -75.000 10.000	lep Calculator kg V kg/kmol Point 2 1.50.000	Peter Björkl H2 Data Limit T = -200 P = 0.001 . Delta 225.000 9.000	und, Antti Ro 20 s . 2000 *C 1000 bar Unit *C v bar v	500 T [*C] 400		Gas Steam		Critical point	
BK Pressure a File Edit For Water Amount MW Temperature Pressure Phase	and Temperatu mat <u>Show H</u> / Steam (1.0 18.0152 Point 1 -75.000 10.000 Solid (s) T	Lep Calculator kg V kg/kmol Point 2 1.50.000 1.000 Gas (g) V	Peter Björkl H2 Data Limit T = -200 P = 0.001 . Delta 225.000 9.000	und, Antti Ro 20 \$ 	500 T [*C] 400		Gas Steam		Critical point	
BSK Pressure a File Edit For Water Amount MW Temperature Pressure Phase Mixture %	and Temperatu mat <u>Show H</u> / Steam (1.0 18.0152 Point 1 -75.000 10.000 Solid (s) T	ure Calculator elp Calculator kg v kg/kmol Point 2 150.000 1.000 Gas (g) v	E Peter Björkl H2 Data Limit T = -200 P = 0.001 . Delta 225.000 9.000	und, Antti Ro 20 * 2000 *C 1000 bar Unit *C • bar •	500 T [*C] 400 300		Gas Steam		Critical point	
BSK Pressure a File Edit For Water Amount MW Temperature Pressure Phase Mixture % H	and Temperatu mat <u>Show H</u> / Steam (1.0 18.0152 Point 1 -75.000 10.000 Solid (s) ▼ -16439.695	ure Calculator elp Calculator kg v kg/kmol Point 2 150.000 1.000 Gas (g) v -13194.209	E Peter Björkl H2 Data Limit T = -200 P = 0.001 . Delta 225.000 9.000 3245.486	und, Antti Ro 200 2000 *C 1000 bar Unit *C • bar •	500 T [*C] 400 300 200		Gas Steam		Critical point	
BSK Pressure a Eile Edit Eor Water Amount MW Temperature Pressure Phase Mixture % H S	And Temperatu mat <u>Show H</u> / Steam (1.0 18.0152 Point 1 -75.000 10.000 Solid (s) -16439.695 1.716	Line Calculator leip Calculator kg v kg/kmol Point 2 150.000 1.000 Gas (g) v -13194.209 11.131	Peter Björkl H2 Data Limit T = -200 P = 0.001 . Delta 225.000 9.000 3245.486 9.415	und, Antti Ro 20 3 2000 °C 1000 bar Unit °C ▼ bar ▼ kJ ~ kJ ~	500 T [*C] 400 300 200		Gas Steam		Critical point	
BX Pressure a File Edit For Water Amount MW Temperature Pressure Phase Mixture % H S H specific	And Temperatu mat Show H / Steam (1.0 18.0152 Point 1 -75.000 10.000 Solid (s) -16439.695 1.716 -574.610	ure Calculator elp Calculator kg ♥ kg/kmol Point 2 150.000 1.000 Gas (g) ♥ -13194.209 11.131 249.226	Peter Björkl H2 Data Limit T = -200 P = 0.001 . Delta 225.000 9.000 3245.486 9.415 823.836	und, Antti Ro 200 * .2000 °C 1000 bar Unit [*] C ▼ bar ▼ kJ ▼ kJ *C kJ	500 T [*C] 400 300 200		Gas Steam		Critical point	
BSC Pressure a File Edit For Water Amount MW Temperature Pressure Phase Mixture % H S H specific G	And Temperatu mat Show H / Steam (1.0 18.0152 Point 1 -75.000 10.000 Solid (s) -16439.695 1.716 -574.610 -16779.665	ure Calculator elp Calculator kg ▼ kg/kmol Point 2 150.000 1.000 Gas (g) ▼ -13194.209 11.131 249.226 -17904.145	E Peter Björkli H2 Data Limit T = -200 P = 0.001 . P = 0.001 225.000 9.000 3245.486 9.415 823.836 -1124.480	und, Antti Ro 200 °C 1000 bar Unit ^{°C} ▼ bar ▼ kJ /°C kJ kJ	500 T [*C] 400 300 200 100		Gas Steam		Critical point	
BSK Pressure a File Edit For Water Amount MW Temperature Pressure Phase Mixture % H S H specific G Cp	And Temperatu mat Show H / Steam (1.0 18.0152 Point 1 -75.000 10.000 Solid (s) -16439.695 1.716 -574.610 -16779.665 1.531	ure Calculator elp Calculator kg v kg/kmol Point 2 150.000 1.000 Gas (g) v -13194.209 11.131 249.226 -17904.145 1.986	E Peter Björkli H2 Data Limit T = -200 P = 0.001 . Delta 225.000 9.000 9.000 3245.486 9.415 823.836 -1124.480 0.455	und, Antti Ro 200 °C 1000 bar Unit *C ▼ bar ▼ kJ/°C kJ kJ/°C kJ kJ/kg°C	500 T [*C] 400 300 200 100	Triple	Gas Steam		Liquid Water	
BSK Pressure a File Edit Eou Water Amount MW Temperature Pressure Phase Mixture % H S H specific G Cp Density	and Temperatu mat Show H / Steam (1.0 18.0152 Point 1 -75.000 10.000 Solid (s) ▼ -16439.695 1.716 -574.610 -16779.665 1.531 917.000	ure Calculator elp Calculator kg ▼ kg/kmol Point 2 150.000 1.000 Gas (g) ▼ -13194.209 11.131 249.226 -17904.145 1.986 0.516	Peter Björkl Pata Limit T = -200 P = 0.001 . Delta 225.000 9.000 9.000 3245.486 9.415 823.836 -1124.480 0.455 -916.484	und, Antti Ro 20 s .2000 °C 1000 bar Unit °C v bar v kJ kJ kJ kJ kJ kJ kJ kJ kJ kJ kJ kJ kJ	500 T [*C] 400 300 200 100	Tripl	Gas Steam		Critical point	
BSK Pressure a File Edit Eor Water Amount MW Temperature Pressure Phase Mixture % H S H specific G Cp Density	And Temperatu mat Show H / Steam (1.0 18.0152 Point 1 -75.000 10.000 Solid (s) -16439.695 1.716 -574.610 -16779.665 1.531 917.000	ure Calculator elp Calculator kg ♥ kg/kmol Point 2 150.000 1.000 Gas (g) ♥ -13194.209 11.131 249.226 -17904.145 1.986 0.516	E Peter Björkli Pata Limit T = -200 P = 0.001 . Delta 225.000 9.000 3245.486 9.415 823.836 -1124.480 0.455 -916.484	und, Antti Ro 20 s 2000 °C 1000 bar Unit °C ▼ bar ▼ kJ × kJ/°C kJ kJ/kg°C kg/m³ ▼	500 T [*C] 400 300 200 100 0	Triple	Gas Steam		Critical point	
BSC Pressure a File Edit For Water Amount MW Temperature Pressure Phase Mixture % H S H specific G Cp Density	And Temperatures and Temperatures Show H / Steam (1.0 18.0152 Point 1 -75.000 10.000 Solid (s) -16439.695 1.716 -574.610 -16779.665 1.531 917.000	ure Calculator elp Calculator kg ▼ kg/kmol Point 2 150.000 1.000 Gas (g) ▼ -13194.209 11.131 249.226 -17904.145 1.986 0.516	E Peter Björkli H2 Data Limit T = -200 P = 0.001 . P = 0.001 225.000 9.000 3245.486 9.415 823.836 -1124.480 0.455 -916.484	und, Antti Ro 200 °C 1000 bar Unit °C ▼ bar ▼ kJ %C kJ kJ kJ/kg°C kg/m³ ▼	500 T [*C] 400 300 200 100 0	Tripl	Gas Steam		Critical point	
BSK Pressure a File Edit For Water Amount MW Temperature Pressure Phase Mixture % H S H specific G Cp Density	and Temperatu mat Show H / Steam (1.0 18.0152 Point 1 -75.000 10.000 Solid (s) ▼ -16439.695 1.716 -574.610 -16779.665 1.531 917.000	ure Calculator elp Calculator kg ▼ kg/kmol Point 2 150.000 1.000 Gas (g) ▼ -13194.209 11.131 249.226 -17904.145 1.986 0.516	E Peter Björkli H2 Data Limit T = -200 P = 0.001 . Delta 225.000 9.000 3245.486 9.415 823.836 -1124.480 0.455 -916.484	und, Antti Ro 200 °C 1000 bar [©] ▼ bar ▼ kJ/°C kJ kJ/kg°C kJ kJ/kg°C kg/m³ ▼	500 T [*C] 400 300 200 100 0	Triple	Gas Steam	2 Jolid Ice	Liquid Water	

6.9. New Help Routine

The new Help routine contains all the information, graphics and formulae of the HSC printed manual with convenient search, print, edit and save options.

6.10. Other Improvements

- The new folder structure divides HSC files into logical groups.
- HSC tables now also have Excel 97 and 2000 file support.
- The length of formulas has been increased from 20 to 24 characters in the EpH module.
- Form resize properties have been improved.
- Many small bug fixes and cosmetic adjustments etc.

6.11. New Windows Me, 2000 and XP Compatibility

- New installation routine.
- New compiler and programming tool versions used.
- HSC 5.0 is compatible with Windows 95, 98, NT, Me, 2000 and XP.

1.

HSC – New in HSC 5.0 13/18 Antti Roine September 5, 2023

6.12. What's New in HSC 5.1 vs. 5.0

- Database fixes:
- HSC now finds all the F- and Zr- containing species.
- Database Editor bug which sometimes created empty records to Own Database has been fixed.
- AI(NO3)3(a) -> AI(NO3)3(ia)
- AIF(+2a), AIF2(+a), AIF3(a) added
- AmSO4(-a) -> Am(SO4)2(-a) (Typo in HSC database)
- BF4Na S -34.728 replaced with NaBF4 S 34.728 cal/mol*K
- (Co(NH3)5H2O)Cl3 -> Co(NH3)5*H2O*Cl3 (Duplicate)
- CrS1.333 H 37.3 -> -37.3 kcal/mol (Typo in HSC database, Mills 74)
- Cr2NiO4 replaced with NiO*Cr2O3 (duplicate)
- FeCr2O4 replaced with Cr2FeO4 (duplicate)
- HFe2O(-a) removed (Typo in Slop 98: HFe2O(-a) -> HFeO2(-a)
- H2O Cp constant when T > 600 K
- HO(g): typo in H and S values fixed
- HOI(g) -> HIO: Reliability Class 1 -> 5 (Gas in Pankratz 95 ?). Compare to HIO(g)(Cor 90, Landolt 01)
- I(-3a) -> I3(-a) (Typo in HSC database, Fabricius 94)
- K3AICI9 -> K3AI2CI9 (Typo in Karapet 70)
- K3Al2F6 -> K3AlF6 (Typo in Karapet 70)
- MoF2 too stable: Reliability Class 2 -> 5 (Ruzinov 75)
- MoO2(+2a), CH3COO(-a), CH3COOH added
- Na2O melting point -1405K -> 1405 K
- NaAlO2 replaced with Na2O*Al2O3 (duplicate)
- Np(+4a) data NAGRA 91 -> Phillips 88
- Np(OH)3(+a) H 313.983 -> -313.983 kcal/mol (Typo in HSC database)
- Np(H2PO4)(+a) -> Np(H2PO4)2(+a) (Typo in HSC database)
- PbSO4*PbO was removed (Enthalpy value typo in Bard 85)
- (Pt(NH3)4)Cl2 -> Pt(NH3)4Cl2
- (Pt(NH3)4)I2 -> Pt(NH3)4I2
- Pu(+4a) data NAGRA 91 -> Phillips 88
- PuO2(SO4)(-2a) -> PuO2(SO4)2(-2a) (Typo in HSC database)
- SCN(-a) replaced with CNS(-a) (duplicate)
- SrZr(Si2O7) was renamed SrZrSi2O7 (Huntelaar 95)
- UO2(G) -> UO3(G): (Typo in HSC database, Phillips 88)
- UO2.25 replaced with U4O9 (duplicate)
- U3O5 deleted: (Typo in Samsonov 78, data seems to be for U3O8)
- ZrF2 too stable: Reliability Class 1 -> 3 (Barin 77, Glushko 94, Landolt 00)
- Some aqueous (a) species was changed to (ia).
- Some new species
- Small fix in "All must exist" option in Find Elements dialog.
- 2. Tpp- Module fixes:
 - Scale and Print Dialog bug fixed.
 - Diagram Area Color Dialog bug fixed.
 - Print and Label dialogs with H, S and Cp diagrams.
- 3. Water-module:
 - Fixed: Small changes in Point 1 did not always effect the Phase option.

- More density values at higher pressures and temperatures.
- 4. Equilibrium Module:
 - Species selection dialog: Sort mode bug fixed.
 - Automatic addition of N2(g).
 - Warning of SGM limitations.
 - Gibbs-routine fix: Diagram button may be pressed before the calculations are ready without crashing application.
 - Pic-routine improvement: Enter -key moves forvard after X- and Y-axis species selection.
 - Gibbs- and SGM-routines: Problem with phase transition data below 298.15 K fixed.

5. New "Key Word Find" Option in Database Menu finds, for example, all the species which contain the Key Word "benzene".

- 6. "Key Word Find" may also be used from Database Peep routine.
- 7. Clearer option captions in Database Menu.
- 8. More warning dialogs.
 - Peep Database dialog: Warning of high number of print pages.
 - Element Find Dialog: More Tool Tip Text.
 - Lpp module: Improved "Triple Point Outside Range" warning.
- 9. Several small fixes in Help- and Manual- files.

10. Maximum number of records in HSC databases was increased from 32767 to 2147483647 records.

11. "HSC DLL Tools" opens native HSC functions and database for use in Visual Basic applications and other programming environments.

12. "WNDTLS32.DLL could not be found" error message bug in HSC Help was fixed.

13. Heat and Material Balance Module:

- Stream temperature link refresh bug was fixed.
- "Calculate Recalc" option clears also columns 0 S.
- Arrow Graphical Object added.
- New "Ideal Gas Density" option.

14. Some other small fixes. For example, HSC main menu flicker n some computers was fixed.

Many thanks for the feedback reports to all active HSC users!

6.13. What's New in HSC Chemistry 4.0

The new HSC version 4.0 contains several **new calculation modules**, **new properties** and a **larger database** with a lot of updated data. The familiar HSC style user interface has been maintained in order to minimize the training requirements of current HSC users. The new features can be summarized as follows:

- 1. The number of substances in the database has been increased from 11000 to more than 15000. A lot of old data has also been updated and extended.
- 2. Improved graphics, printing and format properties in all modules.
- 3. Target calculations in the Heat Balance module for automatic iterations.
- **4.** Improved calculation reliability and speed in the Equilibrium module.
- 5. Eh-pH-diagrams with concentration and temperature lines.
- **6.** A new Tpp-module for stability diagrams with partial pressure and temperature axes.
- 7. A new Diagram module for H-, S-, Cp-, G-, DH-, DG- T graphics.
- **8.** A new Mineralogy module for fast conversion between mineralogical and elemental compositions.
- 9. A new Element module with basic data of elements and graphics.
- **10.** A new Units module with a useful units conversion calculator.
- **11.** A lot of small fixes and tuning of properties based on user feedback.
- 12. New 32-bit HSC version for Windows 95, 98 and NT.

The following sections will give a idea of these new features in more detail.

Installation

The HSC 4.0 installation routine has been updated and is now compatible with Windows® 95, 98 and NT. However, system requirements are still quite reasonable.

Heat and Material Balances

Several new features have been added to the Heat and Material Balance module:

- 1. The new **Target calculation** feature can be used to iterate sequential variable values in order to reach certain target values. For example, the user can set the zero heat balance as a target and find out the feed amount which satisfies the given target condition.
- 2. The graphics feature enables the user to draw diagrams of heat balance calculation sheets. The user may easily select one variable and range for the x-axis and several others whose values are drawn on the diagram as a function of x-variable change.
- 3. The user can easily **import additional MS Excel® sheets** to the module. These sheets can be used to calculate input data for the INPUT-sheet or process results of the OUTPUT-sheet. Files can be saved in Excel format for further treatment of results.
- **4.** Several small improvements and new properties. For example, the user can now resize the forms without step values. The printing capabilities have been improved, for example, the final temperature calculation results can also be printed now.

Equilibrium Calculations

Equilibrium Calculations is one of the most used modules in HSC software, therefore a lot of effort has been spent on improving it. For example:

- 1. The calculation reliability and speed of Gibbs solver is better than in the previous version.
- 2. The processing of Excel type activity formulae has been improved.
- 3. The species table form can easily be resized.
- **4.** The diagrams can be printed in any size. A greater number of lines can be visualized simultaneously by increasing the height of the printed diagram.
- 5. The enthalpy of the reaction can be drawn on the diagram.
- **6.** The maximum number of pure substances in the diagrams has been increased from 99 to 999.
- **7.** This module now makes input-files for ChemSage 2, 3 and 4 versions.(ChemSage is a registered trademark of GTT-Technologies)

Formula Weights

The new feature of the formula weight calculator allows the user to specify the amount of the species in kilograms or moles. This enables the module to calculate the amounts of elements in addition to the compositions and formula weights.

Tpp Phase Stability Diagrams

This new module allows you to draw phase stability diagrams with temperature as the x-axis and a selected partial pressure as the y-axis. Diagrams with partial pressures on both axes can also be drawn. Partial pressures of sulfur, oxygen, sulfur dioxide, carbon monoxide, etc. can be used depending on the selected system.

These diagrams can be used, for example, to estimate what kinds of phases prevail in the roasting furnace in different conditions or to evaluate which condensed substances may become stable when the process gas temperature decreases.

Eh - pH - Diagrams

Eh-pH-diagrams are used to estimate the prevailing species in aqueous solutions as a function of pH and chemical potential. A completely new option has been added to this module. The new features can be summarized in the following list:

- 1. The new routine can be used to combine several diagrams with different concentrations, temperatures or main elements into a single diagram. The traditional concentration diagrams are widely used, but more special temperature and main element diagrams may also give valuable information.
- **2.** The possibility to change the size of printed diagrams is also very useful when there are several small stability areas in the same diagram.
- **3.** The selection of different electrode potential scales is also a useful new feature, where Hydrogen, Calomel and Ag/AgCl-scales can be used.
- 4. Improved calculation reliability.
- **5.** The calculation system specification can easily be modified with the user's own Gibbs energy data. These modifications can be saved for later use.

H, S, C and G - Diagrams

The new diagram module can be used to draw several different types of thermochemical diagrams. The same new versatile graphics and printing features are included as in the other modules. The main features can be summarized as follows:

- **1.** Eight different diagram types can be drawn as a function of temperature:
 - H Enthalpy (total)
 - H Enthalpy (latent)
 - S Entropy
 - Cp Heat Capacity
 - G Gibbs Energy
 - DH
 - DS
 - DG (Ellingham diagrams)
- **2.** Several species can be selected to the enthalpy diagrams simultaneously to compare total or latent enthalpies.
- **3.** DG diagrams (Ellingham diagrams), offer a very fast way to compare the relative stabilities of substances. For example, you can find out which oxide or chloride compound is the most stable one. This information is useful when comparing the reduction and oxidation tendencies of different elements.
- **4.** This module can also be used to compare the basic thermochemical data from different sources, in order to see the differences and select the best data for subsequent calculations.

Mineralogy Module

Composition conversions between substance (mineralogy) and elemental analyses are often needed in chemical R&D work. The new Mineralogy module easily converts mineralogical compositions into elemental compositions.

The conversion of the elemental composition of a substance into a mineralogical one is a more difficult task, for example, due to small analytical errors. This module offers three tools for converting elemental analyzes into mineralogical ones:

- 1. The **Solve method**, which uses matrix-algebra to solve the mineralogy. It is useful if the given amounts of elements fit the given substances exactly.
- 2. The Automatic iterative method, which fits the given elements to the given substances by changing the species contents to achieve the given elemental compositions.
- **3.** The **Manual iterative method**, which may be needed especially if the same element exists in several species.

Elements Module

The thermochemical behavior of species is based on the properties of elements. The location of the element in the periodic system tells us a lot about its chemical nature. The new Elements Module offers a fast way to compare the basic properties of elements in tabular and graphical format.

The database contains data on 56 different properties of elements. As in other HSC modules, the user is permitted to modify and add new data to this database according to personal requirements.

Units Module

Traditionally, several types of energy, temperature, mass and volume units have been used in thermochemical calculations. Therefore, some inconvenient conversions are needed to compare the results from different sources. The new Units Conversion module is an easy tool for fast unit conversions in thermochemical as well as other engineering fields. The specifications of this module can be summarized as follows:

- **1.** Some 90 different quantities and 444 units are available. The user can easily add his/her own units and coefficients into the conversion calculator database.
- **2.** The Units Module also offers data sheets for chemical constants, particle mesh sizes, air humidity and water pressure tables. The user can modify these tables according to personal requirements.

Database

The thermochemical database is an essential part of HSC Chemistry, because the accuracy of the calculation results of all HSC modules depends on the quality of the basic data in the integrated database. Considerable development work has been carried out, which can be summarized as follows:

- 1. The number of species in the database has been increased from 11000 to more than 15000. This data is not critically evaluated, but gives fast access to data and references, which can be found from literature.
- **2.** The quality of the database has been improved and the number of unnecessary duplicate species has been decreased.
- **3.** Further supporting data, such as structural formulae, chemical names, common names, CAS numbers, melting points, boiling points, etc. have been added to the database.
- **4.** HSC 4 uses the same database format as HSC 3, therefore, the user's own databases can also be used with the new HSC 4.0.
- 5. The search procedure for species in "Database Editor" and "Show Database" windows has been improved. The species lists now show the location of the closest match if the given formula is not found in the database.
- **6.** A direct link to the graphics module has been added to the Cp data-fitting option. This allows the easy comparison of experimental and fitted data.
- **7. Important Note**: The main reason for the small differences with HSC 3 and 4 calculation results is the new data in the HSC 4 database.

General improvements

The graphics, printing and format properties as well as resizing capabilities of the table forms have been improved in most calculation modules. This makes it easier to produce high quality hard copies of the results.

Numerous minor improvements and adjustments have been made which are not always visible. However, they will make the life of the HSC user easier. This work has been based mainly on feedback from HSC users.